Wednesday, October 1, 2014

Rational Functions

Rational Functions are any functions which can be defined by a rational fraction for example an algebraic fraction such that both the numerator and the denominator are polynomials. A function f(x) is called a rational function if and only if it can be written in the form
 f(x) = \frac{P(x)}{Q(x)} . Where P\, and Q\, are polynomials in X and Q is not the zero polynomial. The domain of f is the set of all points X for which the denominator Q(x)\, is not zero. However, if P and Q have a non constant polynomial greatest common divisor R, then setting \textstyle P=P_1R and \textstyle Q=Q_1R produces a rational function  f_1(x) = \frac{P_1(x)}{Q_1(x)}, The degree of a rational function is the maximum of the degrees of its constituent polynomials P and QRational functions with degree 1 are called Mobius transformations and form the automorphisms group of the Riemann Sphere. Rational functions are representative examples of meromorphic functions. 


Graph of a rational function:


No comments:

Post a Comment